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Overview

Goal: Evaluate the quality of decisions.

Classical decision theory:

Evaluates based on observed outcomes.
Did the decision yield a successful outcome?

This talk:

What happens if we use all potential outcomes?
Would a different decision have produced the same outcome? If so, would it
have been preferable?

Contribution: Extend classical decision theory for treatment choice to
counterfactual losses.
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Statistical Decision Theory

Wald 1950: Decision-making as a game against nature.

1 Nature picks an unknown state θ,

2 Decision-maker chooses action D = d ,

3 A loss ℓ(d , θ) quantifies the cost of choosing d under θ.

Given covariates X , construct a decision rule D = π(X ).

Measure performance with risk,

R(π; θ, ℓ) = Eθ [ℓ(π(X ), θ)] .
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Treatment Choice

Manski [2000; 2004; 2011]: Statistical decision theory for treatment choice.

Idea:

Choose treatment D = d to minimize loss based on outcome Y .

Loss depends on potential outcome Y (d), i.e., ℓ(d ,Y (d)).

Given covariates X , use a treatment rule D = π(X ).
Evaluate risk

R(π; ℓ) = E [ℓ(π(X ),Y (π(X )))]

Limitation: Loss only depends on the treated potential outcome.
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Trichotomous Decision

Physician treating a patient

D = 0: No treatment

D = 1: Standard treatment (more invasive)

D = 2: Experimental treatment (most invasive)

cD cost of treatment D

Outcome

Y = 1: survival

Y = 0 death

ℓy loss under outcome Y (D) = y

Standard loss:
ℓStd(D,Y (D)) = ℓY (D) + cD

(D,Y (D)) = (1, 0) : ℓ0 + c1

(D,Y (D)) = (2, 1) : ℓ1 + c2
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Trichotomous Decision II

Standard Loss: ℓStd(D,Y (D)) = ℓY (D) + cD

Clinical & ethical goal: Avoid overtreatment

Prefer least invasive treatment that ensures survival

Prefer option k < d if Y (k) = 1

rk regret of overtreating option k

Counterfactual loss:

ℓCof(D;Y (0),Y (1),Y (2)) = ℓY (D) + cD +
∑
k<D

rkY (k).

(Y (0),Y (1),Y (2)) = (0, 1, 1)

D = 1 : ℓ1 + c1

D = 2 : ℓ1 + c2 + r1

We show:

For rk sufficiently large, ℓStd and ℓCof yield different treatment preferences.

No standard loss that can take these ethical considerations into account.
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Setup

Observed data: For each unit i = 1, . . . , n, observe (X i ,Di ,Yi ), where:

Covariates: X i ∈ X
Decision: Di ∈ D = {0, 1, . . . ,K − 1}
Outcome: Yi ∈ Y = {0, 1, . . . ,M − 1}
Potential Outcome under D = d : Y (d) ∈ Y

Aim: Study the quality of a generic decision D∗
i ∈ D (think of D∗ = π(X ))

Assumptions:

IID Sampling: {Yi ,Di ,D
∗
i ,X i} are IID

Consistency: Yi = Yi (Di ), and if D∗
i = Di , then Yi (D

∗
i ) = Yi (Di )

Strong Ignorability:

Unconfoundedness: Di⊥⊥(D∗
i , {Yi (d)}d∈D) | X i

Overlap: ∃η > 0 : η < Pr(Di = d | X i ) < 1− η, for all d ∈ D
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Counterfactual Loss and Risk

Counterfactual loss: ℓ : D × YK ×X → R, i.e., ℓ(d ; y1, . . . , yk , x).
Loss of choosing D∗ = d given

Potential outcomes: (Y (0), . . . ,Y (K − 1)) = (y0, . . . , yK−1)

Covariates: X = x

Definition (Counterfactual Risk and Conditional Counterfactual Risk)

Given counterfactual loss ℓ, the counterfactual risk of decision D∗ is:

R(D∗; ℓ) := E [ℓ(D∗;Y (0), . . . ,Y (K−1),X )] = E [RX (D
∗; ℓ)]

where the conditional counterfactual risk given X = x is,

Rx(D
∗; ℓ) :=

∑
d∈D

∑
{yk}K−1

k=0 ∈YK

ℓ(d ; y0, . . . , yK−1, x)

× Pr(D∗ = d ,Y (0) = y0, . . . ,Y (K − 1) = yK−1 | X = x).

Problem: Pr(D∗ = d ,Y (0) = y0, . . . ,Y (K − 1) = yK−1 | X = x) unidentifiable
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Identifiability of Counterfactual Risk

“Definition”: A causal parameter is identifiable if it can be expressed as a
function of the observables, i.e., Pr(D,D∗,Y ,X ).

Focus on RX (equivalent to R). Issue

Pr(D∗,Y (0), . . . ,Y (K − 1) | X )

not identifiable. However, under strong ignorability

Pr(D∗ = d ,Y (k) = yk | X ) = Pr(D∗ = d ,Y = yk | D = k,X ).

Can we impose structure on ℓ that enables identification?
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Additivity

Definition (Additive Counterfactual Loss)

Let y = (y0, . . . , yK−1) ∈ YK . Then the additive counterfactual loss is defined as,

ℓAdd(d ; y , x) = ωd(d , yd , x) +
∑

k∈D,k ̸=d

ωk(d , yk , x) +ϖ(y , x).

ωd(d , yd , x) : D × Y × X → R
Factual weight: Contribution of observed outcome Y (d)
Decision dependent
ωd(d , yd) = ℓyd + cd

ωk(d , yk , x) : D × Y × X → R
Counterfactual weight: Contribution of unobserved Y (k)
Decision dependent
ωk(d , yk) = rkyk1{k < d}

ϖ(y , x) : YK ×X → R
Intercept term
Decision independent
ϖ(y) = 0
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Additivity Implies Identifiability

Theorem (Additivity Implies Identifiability)

Let ℓAdd be additive. Then,

R(D∗; ℓAdd) =
∑
d∈D

∑
k∈D

∑
y∈Y

E[ωk(d , y , x) Pr(D∗ = d ,Y (k) = y | X )] + E[C (X )],

where
C (x) =

∑
y∈YK

ϖ(y , x) Pr(Y (D) = y | X = x),

with Y (D) = (Y (0), . . . ,Y (K − 1)).

Decomposition into identifiable marginal term and unidentifiable term, not
depending on D∗.

Thus an additive loss yields an identifiable risk (up to a constant).
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Additivity is Necessary and Sufficient

Can a counterfactual risk be identified under a non-additive loss?

Theorem

Under strong ignorability, the counterfactual risk R(D∗; ℓ) is identifiable (up to a
constant) if and only if the loss ℓ is additive.
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Outlook

In the paper, we further explore:

Binary outcome
Connections between loss and principal strata
When additive counterfactual losses yield different treatment
recommendations than standard losses

Next steps and extensions:

Incorporating time-dependent decisions and outcomes
Relaxing strong ignorability
Continuous outcomes Y

Thank you!
Happy to talk counterfactuals: What should I have done?

Scan the QR code to view the paper.
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Binary Outcomes

Corollary

Assume Y ∈ {0, 1}. Let ℓAdd be additive. Then,

Rx (D
∗; ℓAdd) =

∑
d∈D

ζd (d , x) Pr(D∗ = d ,Y (d) = 1 | X = x)

+
∑
d∈D

∑
k∈D,k ̸=d

ζk (d , x) Pr(D∗ = d ,Y (k) = 1 | X = x)

+
∑
d∈D

ξ(d , x) Pr(D∗ = d | X = x) + C(x).

where ζk (d , x) = ωk (d , 1, x)− ωk (d , 0, x), ξ(d , x) =
∑

k∈D ωk (d , 0, x), and

C(x) =
∑

y∈{0,1}K
ϖ(y , x) Pr(Y (D) = y | X = x).

Decomposition into accuracy, difficulty, decision and unidentifiable constant term.

Choosing weights

ωd (d , 1) ≤ {ωd′ (d , 0)}d′ ̸=d ≤ 0 ≤ {ωd′ (d , 1)}d′ ̸=d ≤ ωd (d , 0),

yields ζd (d , x) ≤ 0 ≤ ζk (d , x) for all k ̸= d . Implies risk decreases with accuracy and increases
with counterfactual regret.
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Binary Decisions

Proposition (Additive Counterfactual Risk with Binary Decision)

Suppose that the decision is binary, i.e., D = {0, 1}. For any additive
counterfactual loss ℓAdd(d ; y , x), we can construct a standard loss ℓStd(d , yd)
such that the risk difference R(D∗; ℓAdd)− R(D∗; ℓStd) does not depend on D∗.

If decisions are binary, any additive counterfactual risk admits a standard risk that
yields identical treatment recommendations.

However,

ℓStd has infinitely many additive counterfactual losses ℓAdd’s with the same
treatment recommendations

Each of them assigns different values to principal strata

Thus ℓStd has no clear interpretation based on principal strata

While ℓAdd does have a clear interpretation based on principal strata
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General Decisions

Proposition (Additive Counterfactual Risk with Non-binary Decision)

Assume that the decision is non-binary, i.e., K = |D| ≥ 3. Then, for any additive
counterfactual loss with at least one counterfactual weight ωk(d , yk , x) depending
on the decision d ∈ D and potential outcome yk ∈ Y for d ̸= k, there exists no
standard loss ℓStd(d ; yd) such that the risk difference R(D∗; ℓAdd)− R(D∗; ℓStd)
does not depend on D∗.
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Example: Binary Decisions

Physician treating a patient

D = 0: No treatment

D = 1: Standard treatment

cD cost of treatment D

Outcome

Y = 1: survival

Y = 0 death

ℓy loss under outcome Y (D) = y

Standard loss: ℓStd(D,Y (D)) = ℓY (D) + cD

Counterfactual loss (extended from Ben-Michael, Greiner, et al. 2024):

ℓ(D;Y (0),Y (1)) = ℓY (D) + ℓ̃Y (1−D) + cD

ℓ̃y loss of counterfactual outcome, ℓ̃0 < ℓ̃1, i.e. loss is greater when the patient
survived under the other treatment (missed positive)
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Example: Asymmetric Counterfactual Loss

Hippocratic Oath — “Do no harm”: Causing harm with treatment is worse than
failing to provide treatment.

Loss based on Principal Strata (Ben-Michael, Imai, and Jiang 2024):

ℓ(D;Y (0),Y (1)) = (1− Y (0))Y (1)ℓRD + Y (0)(1− Y (1))ℓH1−D

+ Y (0)Y (1)ℓ1 + (1− Y (0))(1− Y (1))ℓ0 + cD ,

Asymmetry in loss:

∆R = ℓR0 − ℓR1︸ ︷︷ ︸
Failure to treat
a responder

< ∆H = ℓH0 − ℓH1︸ ︷︷ ︸
Harming
a patient

.

Non-additive loss if ∆R ̸= ∆H.
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